

Introduction to SuperSpeed

USB 3.0 Protocol

Ankur Tomar & Edmund Lim – Global Technology Centre

Volume 1, April 2011

2

1. What is USB?

As its name suggests, Universal Serial Bus (USB) is an external bus architecture for

connecting USB-capable peripheral devices to a host compute. The USB is formed in 1994

by a group of 7 companies namely Compaq, DEC, IBM, Intel, Microsoft, NEC and Nortel.

Earlier, the objective of this standardisation is to enable the convenience of connecting

external devices to PCs by replacing the multitude of connectors at the back of the PCs. But

as technology advanced that leads to faster data transmission rate, USB technology has

gradually evolved from just a connection between external devices to the PCs, to a serial

single port on the computer that becomes a link for a myriad of devices (up to 127 devices in

a USB system). USB 1.0 was released in January 1996 with only a data transfer rate of 1.5

Mbps. Moving on to USB 1.1 with a maximum data transfer rate of 12Mbps was soon

introduced in September 1998.

Next, the USB 2.0 specification was launched in April 2000 and was standardized by the

USB-IF (Implementers Forum, Inc) at the end of 2001. Hewlett-Packard, Intel, Lucent

Technologies (now Alcatel-Lucent), NEC and Philips jointly led the initiative to develop a

higher data transfer rate, with the resulting specification achieving 480 Mbps, 40 times faster

than the original USB 1.1 specification.

The USB 3.0 specifications were released on November 2008. Here in USB 3.0, it has an

increased data transfer rate (up to 5Gbps), decreased power consumption, increased power

output and most importantly, USB 3.0 is backwards-compatible with USB 2.0. Also, USB 3.0

consists of a new higher speed bus known as SuperSpeed that is in parallel with the USB 2.0

bus.

3

2. How SuperSpeed USB 3.0 is Different from USB 2.0?

2.1. Speed: The most obvious change in SuperSpeed USB versus USB 2.0 high-speed is the

over 10X speed increase from 480 Mbps to 5 Gbps.

2.2. Physical Layer: Electrical signalling of the physical layer has been changed from the

simple two-wire system to a dual-simplex data path. Hence packets arrive and leave at

the same time. This is done over a new set of connection along with the existing USB 2.0

two-wire interface, which remains untouched.

2.3. Polling: Polling is eliminated in USB 3.0 and replaced by asynchronous notification. In

USB 2.0, the host need to continuously polls all connected peripheral devices to check if

the device have data to transfer, to do so all devices must be "on" at all times. In

SuperSpeed USB, the host waits until a higher level application tells it that there is a

peripheral that has data to transfer. Then the host contacts that specific peripheral to

check if data is ready to transfer. When both ends of the link are ready, the data is

transferred.

2.4. Broadcast: SuperSpeed USB eliminates the broadcast nature of the USB 2.0 bus

protocol and uses directed data transfer from/to the host and device. This again enables

power savings by only turning ON the transceiver for the required device for which the

data is intended to transfer. The other peripherals on the bus do not need to use power as

the data request is not directed towards them.

2.5. Power: The amount of power available to USB 3.0 device is higher than USB 2.0,

raised to 5V @900mA from 5V @500mA. The unconfigured current limit is also raised

from 100mA to 150mA.

3. What are the USB System cComponents?

Basically, in a USB system configuration, it consists of namely the 3 essential parts which are

the USB Host, USB Hub and USB function (peripherals)

4

3.1. USB Host: This is the area where the USB host controller is installed and where the

client software/device driver runs.

The USB Host Controller is the

interface between the host and the

USB peripherals. The host is

responsible for the detection of the

insertion and removal of USB

devices and data flow between the

host and the devices. The host also

provides power to the attached

devices.

3.2. USB Hub: A USB device that

allows multiple USB devices to

attach to a single USB port on a USB host.

3.3. USB Function (Peripheral): A USB device that can transmit or receive data or control

information over the bus and that provides a function. A function is typically

implemented as a separate peripheral device that plugs into a port on a hub using a cable.

This is known as a standalone device. However, it is also possible to create a compound

device, which is a physical package that implements multiple functions and an embedded

hub with a single USB cable. A compound device appears to the host as a hub with one

or more non-removable USB devices, which may have ports to support the connection of

external devices.

4. Topology used by USB:

In an USB topology or architecture, it employs tiered Star topology physical connections

where each hub is the center of a star that can connect to peripherals or additional hubs. At

any one time, only a maximum of 5 external hubs can be connected in series and up to a total

of 127 peripherals and hubs including the root hub. However it may be impractical to have so

many devices communicating with a single host controller. Despite having multiple devices

connected at one time, only one device at a time can communicate with a host controller.

Figure 2: USB Physical Device Hierarchy

5

Thus, to increase the available bandwidth for USB devices, a PC can have multiple host

controllers.

Figure 3: USB Star Topology

5. USB Data Communication:

In USB data communication, the USB

encodes the data by using the Non-

Return-to-Zero Inverted (NRZI)

transmission scheme. In NRZI coding,

a “1” bit is represented by a transition

of the physical level and “0” bit is

represented by no transition of the

physical layer. In addition, in order to

ensure a minimum density of signal

transitions that remains in the bitstream, an additional “0” bit is injected onto the data bus

after the occurrence of 6 consecutive “1” bits. Here, in this method, is commonly known as

bit stuffing or simply insertion of non-information bits into data. All this is done to ensure the

presence of sufficient signal transitions for clock recovery.

Figure 4: Example of NRZI encoding used by

USB Data Communication.

6

6. USB 3.0 Cables and Connectors:

USB 3.0 cables have two additional shielded differential pairs (SDP) of wires for a total of 8

signal wires. 3.0 cables have to be shielded to prevent electromagnetic interference and

maximize signal integrity. This means the cables are thicker, heavier, less flexible and more

expensive than 2.0 cables

Figure 5: Cross section view of SuperSpeed USB 3.0 cable

There are several different USB 3.0 connectors, which are similar to the USB 2.0 connectors.

6.1. USB 3.0 Type-A: USB 3.0 Type-A connector’s

look very similar to USB 2.0 Type-A connectors

aside from subtle differences. USB 3.0 Type-A

connectors are slightly extended to accommodate

pins for SuperSpeed mode. USB 3.0 Type-A

connectors are compatible with USB 2.0 ports, and

vice versa.

Figure 6: USB 3.0 Type A Connector

7

6.2. USB 3.0 Type-B: USB 3.0 Type-B connectors are modified USB 2.0 Type-B

connectors with SuperSpeed pins added on top. USB 2.0 Type-B cables are compatible

with USB 3.0 ports, but not vice versa. Type-B connectors are commonly used on large

stationary devices like printers.

Figure 7: USB 3.0 Type B Connector

6.3. USB 3.0 Micro-B: The Micro-B connector is identical to the USB 2.0 connector but

with an extended portion for the extra 5 pins. The USB 3.0 cable cannot be plugged into

a USB 2.0 port, but the USB 2.0 cable can be used in a 3.0 port.

Figure 8: USB 3.0 Micro B Type Connector

8

7. USB 3.0 Enumeration:

USB Enumeration is the process of a host detecting that a USB device has been connected,

identify what has been connected and then loading the relevant device drivers. The USB

specification defines six device states. During enumeration, a device moves through four of

the states: Powered, Default, Address, and Configured. (The other states are Attached and

Suspend). This involves a mixture of hardware techniques for detecting something is present

and software to identify what has been connected. After detecting the presence of a device the

host will initiate a transfer with the device to determine what it is. The host does this by

asking for device descriptors which define the device class and what drivers need to be

loaded.

7.1. Types of USB Descriptors:

Devices are identified with the help of descriptors; each descriptor contains information about

the device as a whole or an element in the device. USB descriptors are the data structures that

enable the host to learn about a device. Each device (except compound devices) has one and

only one Device Descriptor that contains information about the device and specifies the

number of configurations the device supports. For each configuration all the device has

Configuration Descriptor which provides information about the device’s use of power and

the number of interfaces the configuration supports. For each interface, the device has an

Interface Descriptor that specifies the number of endpoints. Each endpoint has an Endpoint

Descriptor that contains information needed to communicate with the endpoint.

SuperSpeed devices must provide a Binary device Object Store (BOS) Descriptor and at least

two subordinate Device Capability Descriptors: a SuperSpeed USB descriptor and a USB 2.0

Extension descriptor. Every SuperSpeed endpoint descriptor has a subordinate SuperSpeed

endpoint companion descriptor. A string descriptor can store text such as the vendor’s or

device’s name or a serial number. On receiving a request for a configuration descriptor, a

device should return the configuration descriptor and all of the configuration’s interface,

endpoint, and other subordinate descriptors up to the requested number of bytes.

9

Figure 9: Device Configuration Descriptor for SuperSpeed USB 3.0

7.2. Steps involved in USB Enumeration:

SuperSpeed USB 3.0 device Enumeration works almost exactly as it does in USB 2.0. The

steps below are a typical sequence of events that occurs during enumeration under Windows

OS.

7.2.1 The user attaches a device to a USB port. The port may be on the root hub at the

host or a hub that connects downstream from the host. The hub provides power to the

port, and the device is in the Powered state. The device can draw up to 150 mA from the

bus before configuration and 900 mA after configuration.

10

7.2.2. The Host detects the device. A USB port with no device connected uses 15kohm

pull-down resistors to connect both USB D+ and D- lines to GND. The USB host

monitors the voltages level on these signal lines (D+ and D-) of each of its ports. When a

device plugs into a port, the device’s brings its line high with its pull-up resistors,

enabling the host to detect that a device is connected.

A low speed USB device (1.5Mbps) uses a 1k5 pull-up resistor to VCC on the USB DM

signal line.

A full speed USB device (12Mbps) uses a 1k5 pull-up resistor to VCC on the USB DP

signal line.

A high speed device (480Mbps) will initially appear as a full speed device to the host.

7.2.3. Detecting a Device has been connected. Detecting whether a connected device

supports high speed, USB host uses two special signal states known as J and k Chirp.

Host sends a series of alternating Chirp K and Chirp J. On detecting the pattern KJKJKJ,

the device removes (switch OFF) its full-speed pull-up resistors and performs all further

communications at high speed. If this initial communication fails then the USB host

assumes that the device is a full speed device.

A J state is defined as a differential signal on USB D+ and USB D- >= +300mV.

A K state is defined as a differential signal on USB D+ and USB D- >= -300mV.

SuperSpeed USB 3.0: On detecting a downstream SuperSpeed termination at a port, a

host initializes and trains the port’s link. Enumeration then proceeds at SuperSpeed with

no need for further speed detecting.

7.2.4. Establishing Signal pair: Once the USB host identify device is connected and at

what speed it should communicate, then the host will send a reset to the USB device. The

device communicates with the host using the default address of 00h. The device is in the

Default state and device’s USB registers are in their reset states. Now the device is ready

11

to respond to control transfers at endpoint zero. This reset is visible to the new device

only and the other devices on the bus don’t see the reset.

SuperSpeed USB3.0: The host isn’t required to reset the port after learning of a new

device.

7.2.5. Identifying What Device is connected. As mentioned above, devices are identified

with the help of descriptors. This is basically a question and answer session between host

and USB device, the host sends the “Get_Device_Descriptor” command to device default

address 00h, endpoint zero. The host enumerates only one device at a time, only one

device will respond to the communication addressed to the device address 00h, even if

several devices were attach at once.

The host will receive first packet of 8 bytes of device descriptor with the information of

maximum packet size supported by endpoint zero. The host begins the Status stage of the

transfer. After completion of this stage the device is reset and host assigns a unique

address by sending Set Address request. The device is now in the Address state. All

communications from

Table 1: The Device Descriptor identifies the product and its manufacturer, sets the

maximum packet size for endpoint zero, and can specify a device class.

12

this point on use the new address. The device completes the Status stage of the request using the

default address and then implements the new address. After assigning new address host again

sends a “Get Descriptor” request to the new address, this time the host retrieves the entire

descriptor. The device descriptor contains the maximum packet size for endpoint zero, the

number of configurations the device supports, and other basic information about the device.

7.2.6. The host learns about the device’s abilities. The host continues to learn about the

device by requesting the one or more configuration descriptors followed by its

subordinate descriptors specified in the device descriptor. The device responds by

sending the configuration descriptor followed by all of the configuration’s subordinate

descriptors, including interface descriptor(s), with each interface descriptor followed by

any endpoint descriptors for the interface.

The Configuration Descriptor and the Interface Descriptor both are of a fixed length, 9

bytes, and is defined as type 2 and type 4 respectively. The Configuration descriptor

provides device specific information such as the number of interfaces supported by the

device and maximum power the device is expected to consume. The Interface descriptor

provides information such as the number of endpoints to be used.

Table 2: The Configuration Descriptor specifies the maximum amount of bus current the

device will require and gives the total length of the subordinate descriptors.

13

Table 3: The Interface Descriptor specifies the number of subordinate endpoints and may

specify a USB class.

7.2.7. SuperSpeed USB 3.0 Additional

Descriptors. Some devices use

additional descriptors to store

information that is specific to a

technology or a device function. To

provide a standard way to provide this

information, the SuperSpeed USB 3.0

specification introduced two new

descriptor types: The Binary device

Object Store (BOS) descriptor,

functions as a base descriptor for one or

more related device capability descriptors and a device capability descriptor, provides

information about a specific capability or technology.

All SuperSpeed USB 3.0 devices must provide this descriptor and must support Link

Power Management (LPM) when operating at high speed. USB 2.0 devices that support

Link Power Management also provide this descriptor

Figure 10: SuperSpeed USB 3.0 introduced
descriptor- BOS Descriptor

14

Table 4: A Binary device Object Store (BOS) Descriptor provides a way to support

descriptors that store additional information about a device.

Table 5: The Device Capability Descriptor can provide information that is specific to a

technology or another aspect of a device or its function.

7.2.8. Loading the Driver. When the USB device has been fully identified by the USB host

using descriptors, the host looks for the best match in a driver to manage

communications with the device. This is done with the help of Windows INF file which

contains Vendor ID and Product ID. The device driver with the best matched is installed

with the desired configuration by sending “Set Configuration” request by the driver. On

receiving the request, the device implements the requested configuration. Now device is

in Configured state and available for applications to access.

15

After the initial installation the settings are saved in the PC registry so that on subsequent

plug-ins of the USB device, the driver is automatically loaded.

Figure 11: USB Enumeration Trace

8. USB Device Class:

As a group of devices or interfaces share many attributes or provide or request similar

services, it is vital to define the attributes and services in a class specification.

Therefore, USB defines class code information that is used to identify a device’s functionality

and to nominally load a device driver based on that functionality. Also, all USB class

specifications are based on the Common Class specification, which describes what

information a class specification should contain and how to organize a specification

document.

16

Table 6: USB device Class codes

9. USB Data Transfer:

Here, it describes the data flow in the USB devices. Basically, the key structures of the data

flow are the endpoint and the pipe. An endpoint is a uniquely identifiable entity on a USB

device that is the source or terminus of the data that flows from or to the device. Next, the

pipes are the logical channels that link between an endpoint on the USB device and software

on the host (host controller).

However, there are 2 types of pipes namely the stream pipe or message pipe depending on the

type of data transfer. Stream pipes handle the interrupt, bulk and isochronous transfers while

message pipes support the control transfer type. Figure 8 shows the overview of the USB

data flow physical structure that consists of the hosts, pipes and endpoints.

Base Class Descriptor Usage Description

00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Device or Interface Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

DCh Device or Interface Diagnostic Device

E0h Interface Wireless Controller

EFh Device or Interface Miscellaneous

FEh Interface Application Specific

FFh Device or Interface Vendor Specific

17

Figure 12 : USB data flow physical structure

As mentioned earlier, in USB protocol, basically there are 4 Data Transfer Mechanism to

choose from so that to achieve the optimal communication for different peripheral devices. In

addition, the methods differ in the amount of data that can be moved in a single transaction in

whether any particular periodicity or latency can be guaranteed. The 4 types of transfers are

arranged in ascending orders of their priorities:

9.1. Control Transfer:

� Used to send and receive structural information of control nature (used by the Host to

send commands or query parameters)

� Can be used in all devices

� Priority 3

9.2. Bulk Transfer:

� Used to send or receive blocks of unstructured data

� Mainly used in Printers, Scanners, Digital Cameras and other peripheral devices that

need high reliability transfers

� Priority 3

18

9.3. Interrupt Transfer:

� Used on devices that need guaranteed quick response (asynchronous time frame)

� Mainly used in pointing devices, mouse, keyboard and joy-stick

� Priority 2

9.4. Isochronous Transfer:

� Used for transfers that need to be performed in real-time (data must arrive at a constant

rate, or by specific time)

� Mainly used in speaker, microphone and telephone

� Priority 1

Table 7: Supported transfer types and speed

In USB transfer protocol, it uses the concept of frames and microframes which presents 1ms

and 125µs respectively for time management. Since both isochronous and interrupt transfers

require time management, the amount of Non-Periodic (Bulk or Control) transfers within a

particular time unit will vary depending on the amount of Periodic (Interrupt or Isochronous)

transfers within the same time unit. This means the bulk and control transfers use whatever

space is left.

Transfer

Type/Sp

eed

High Speed

(480Mbps)

Full Speed

(12Mbps)

Low Speed

(1.5Mbps)

Direction

Control
64 byte/packet

8,16,32 or 64

byte/packet
8 byte/packet Bi-Dir

Bulk
<512 byte/packet

8,16,32 or 64

byte/packet
Not allowed Unidir

Interrupt <1024 byte/packet < 64 byte/packet < 8 byte/packet Unidir

Isochronous

< 3072 byte/packet
< 1023

byte/packet
Not allowed Unidir

19

Figure 13: Overview of a typical single frame control transfer

In addition, all USB data is sent serially with least significant bit (LSB) being sent first. USB

data transfer is essentially in the form of packets of data which will be sent to and forth

between the host and the peripheral devices. In all 4 different transfers of Control, Bulk,

Interrupt and Isochronous, these 4 transfers consist of 3 types of packets namely the i) Token,

ii) Data and iii) Handshake.

Figure 14: Overview of a transaction frame

The above 3 packets form a TRANSACTION where the 4 different data transfers can be

made of either one or several transactions.

9.5. Token Packets:

Generally, it consists of the following elements: sync sequence, Package identifier, device

address, endpoint number and 5-bit Cyclic Redundancy Check (CRC). Tokens are only sent

by the host, not by a device.

Figure 15: Frame for Token Packet

20

9.6. Data Packets

The data packets are always preceded by an address token. It consists of the following

elements: sync sequence, package identifier, data and 16-bit Cyclic Redundancy Check

(CRC). Also, the data must be sent in multiples of bytes.

� Maximum data size for low-speed devices is 8 bytes.

� Maximum data size for full-speed devices is 1023 bytes.

� Maximum data size for high-speed devices is 1024 bytes.

Figure 16: Data Packet

9.7. Handshake Packets

They are generally sent in response to data packets. It consists of the following elements:

sync sequence and Package identifier.

Figure 17: Handshake Packet

